

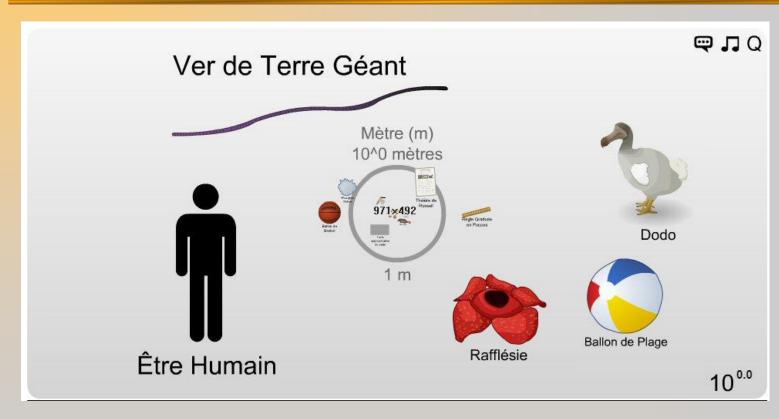
LA CAPSULE DU DÉBUTANT

Les proportions en astronomie

- ✓ Les échelles de l'Univers
- ✓ La notation scientifique
- ✓ La règle des exposants

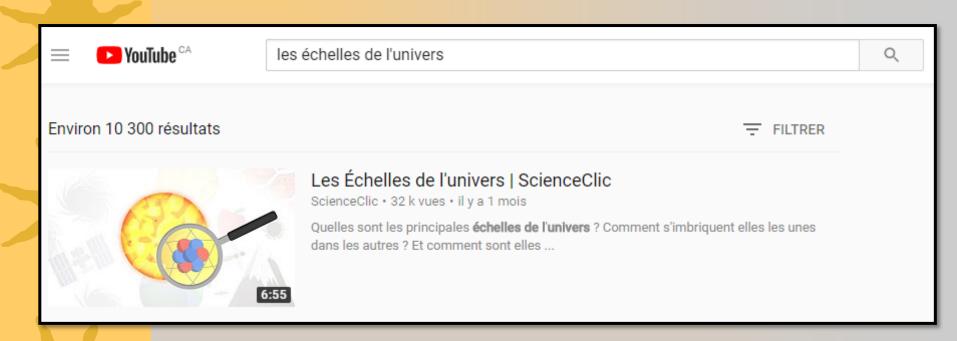
LES OBJECTIFS

- *Au terme de cette présentation, le participant pourra :
 - Expliquer les différentes échelles de l'Univers :
 - De l'infiniment petit
 - A l'infiniment grand
 - Démontrer les dimensions de l'Univers.
 - Nommer certains des éléments significatifs qui composent notre Univers.



LES OBJECTIFS

- *Au terme de cette présentation, le participant pourra :
 - Illustrer les principes de la notation scientifique.
 - Effectuer des opérations mathématiques simples en utilisant la notation scientifique.

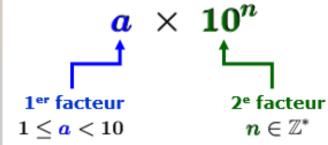

LES ÉCHELLES DE L'UNIVERS

http://htwins.net/scale2/

LES ÉCHELLES DE L'UNIVERS

https://www.youtube.com/watch?v=gzGUio7rBQk

LES ÉCHELLES DE L'UNIVERS



- ***La représentation des nombres :**
 - La masse de la Terre = 5 972 000 000 000 000 000 000 kg
 - La distance de Proxima du Centaure = 40 308 500 000 000 000 m
 - La masse du proton = 0,000 000 000 000 000 000 000 000 001 673 kg

- *La notation scientifique est composée de deux facteurs :
 - La mantisse est un nombre décimal a supérieur à 1 mais inférieur à 10 et formé des chiffres significatifs du nombre initial.
 - Une puissance de 10 exprimée en notation exponentielle qui indique l'ordre de grandeur du nombre.

- ***La représentation des nombres :**
 - La masse de la Terre = 5 972 000 000 000 000 000 000 kg 5,972 X 10²⁴ kg
 - La distance de Proxima du Centaure = 40 308 500 000 000 000 m 4,03 X 10¹⁶ m

Classique	123 456	
Scientifique	1,23456	10 ⁵
"	1,23456	E+5
"	1,23456	e+5
Machine à écrire	1,23456	*10^5

- * 1,23456 x 10⁵
- * 1,23456E+5
- * 1,23456e+5
- *** 1,23456*10^5**


```
*10^0 = Unité
 10^1 = Dizaine (déca)
 10^2 = Centaine (hecto)
 10^3 = Mille (kilo)
 10^6 = Million (Méga)
 109 = Milliard (Giga) (billion (En))
 10^{12} = Billion (Téra) (trillion (En))
 10^{18} = Trillion (Exa) (quintillion (En))
```



```
*10^{-1} = Unité

10^{-1} = Déci (d)

10^{-2} = Centi (c)

10^{-3} = Milli (m)

10^{-6} = Micro (µ)

10^{-9} = Nano (n)

10^{-12} = Pico (p)
```


LES LOIS DES EXPOSANTS

* Multiplication:

$$b^m \bullet b^n = b^{m+n}$$

$$10^5 \cdot 10^2 = 10^{5+2} = 10^7$$

*Division:

$$> b^m/b^n = b^{m-n}$$

$$10^{5}/10^{2} = 10^{5-2} = 10^{3}$$

*Élévation à une puissance

$$> (b^m)^n = b^{m \cdot n}$$

$$(10^5)^2 = 10^{5 \cdot 2} = 10^{10}$$

LES LOIS DES EXPOSANTS

*Autres:

$$>$$
b⁻ⁿ = $\frac{1}{b^n}$

$$8^{-2} = \frac{1}{8^2}$$

$$\sqrt{b} = b^{\frac{1}{2}} \qquad \sqrt{9} = 9^{\frac{1}{2}} = 3$$
$$8^{\frac{2}{3}} = \sqrt[3]{8^2} = (\sqrt[3]{8})^2 = 4$$

LES LOIS DES EXPOSANTS

*
$$(4 \times 10^4) \cdot (8 \times 10^8) = 4 \cdot 8 \times 10^{4+8} = 32 \times 10^{12}$$

 $3.2 \times 10^{12} \cdot 10^1 = 3.2 \times 10^{13}$

*
$$(4 \times 10^4)/(8 \times 10^8) = 4/8 \times 10^{4-8} = 0.5 \times 10^{-4}$$

5 x 10⁻⁵

$$*(4 \times 10^4)^2 = 4^2 \times (10^4)^2 = 16 \times 10^8$$

1,6 x 10⁹

Problème:
$$\frac{(2 \times 10^3) * (3 \times 10^2)}{6 \times 10^5} = 1$$

LES UNITÉS INTERNATIONALES

0 44	WT 14.7		75.4% 1.1
Quantité	Unité	Symbole	Définition
Longueur	mètre	m	Le mètre est la longueur du trajet parcouru dans le vide par
			la lumière pendant 1/299 792 458 de seconde. (1983)
Masse	kilogramme	kg	Le kilogramme est la masse du prototype en platine iridié,
		ò	déposé au Bureau International des Poids et Mesures. (1889)
Temps	seconde	S	La seconde est la durée de 9 192 631 770 périodes de la
			radiation correspondant à la transition entre les deux niveaux
			hyper fins de l'état fondamental de l'atome de césium 133.
			(1967) précision : 10*12
Courant électrique	ampère	A	L'ampère est l'intensité d'un courant constant qui, maintenu
			dans deux conducteurs parallèles, rectilignes, de longueur
			infinie, de section circulaire négligeable et placés à une
			distance d'un mètre l'un de l'autre dans le vide, produirait
			entre ces conducteurs, une force égale à 2.10°7 newton par
			mètre de longueur. (1948)
Température	kelvin	K	Le kelvin est égal à la fraction 1/273,16 de la température
			thermodynamique du point triple de l'eau. (1967)
			Le degré Celsius est égal au kelvin.
Quantité de matière	mole	mol	La mole est la quantité de matière contenant autant d'entités
			élémentaires qu'il y a d'atomes dans 0,012 kg de carbone 12.
			(1971)
			La mole (mol) est l'abréviation de molécule par gramme.
		La candela est l'intensité lumineuse, dans une direction	
			donnée, d'une source qui émet une radiation mono-
			chromatique de fréquence 540.10 ¹² hertz (longueur d'onde
			0,555 µm) et dont l'intensité énergétique dans cette direction
			est 1/683 watt par stéradian. (1979)

http://www.utc.fr/~tthomass/Themes/Unites/si/SI.pdf

RÉFÉRENCES

*Astronomie et Astrophysique, 2e édition Séguin M, Villeneuve B Éditions du Renouveau Pédagogique Inc., 2002

*Mathématiques d'appoint, 4e édition révisée Gingras M, Charron G
Beauchemin Chenelière Éducation, 2011